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Abstract-For a simply supported elastic-plastic square plate under axial compression the post-bifurcation
behaviour and the sensitivity to initial imperfections are investigated. An exact asymptotic expansion is given
for the initial post-bifurcation behaviour of a perfect plate compressed into the plastic range. The
imperfection sensitivity is studied through an asymptotic analysis of the behaviour of the hypoelastic plate
that results from neglecting the effect of elastic unloading, The results of the asymptotic analyses are
compared with results of a numerical incremental solution by means of a combined finite element-Rayleigh
Ritz method. The paper considers the effect of different in-plane boundary conditions and the effect of
various degrees of strain hardening.

I. INTRODUCTION

This paper is concerned with the postbuckling behaviour and imperfection sensitivity of simply
supported square elastic-plastic plates. The plate material is taken to be strain hardening and
characterized by a flow theory of plasticity with a smooth yield surface. Two types of in-plane
boundary conditions are considered; one requires all four edges of the plate to remain straight
throughout the loading history, the other leaves the edges unconstrained. In the elastic range,
these in-plane boundary conditions play a crucial role in determining the initial postbuckling
behaviour of the plate [1]. However, previous studies of elastic-plastic square plates [2-4], have
not investigated the effects of in-plane boundary conditions on the postbuckling behaviour and
imperfection sensitivity in the plastic range.

For bifurcation of the perfect plate in the plastic range Hutchinson's theory of
postbuckling[5,6] is employed to obtain an asymptotically exact description of the initial
post-bifurcation behaviour. For the plate with a small initial curvature, compressed into the
plastic range, there is, as yet, no general theory available that relates the behaviour of the
imperfect structure to the postbuckling behaviour of the corresponding perfect structure, as is
done in Koiter's general theory of elastic stability [7]. Here, an analysis that neglects elastic
unloading is employed in an attempt to assess the imperfection sensitivity of simply supported
square plates, when bifurcation of the perfect plate occurs in the plastic range. This analysis,
approximate for the problems considered here, is based on that employed by Hutchinson and
Budiansky[8] in their exact analysis of the postbuckling behavior of a cruciform column.

The post-bifurcation behaviour and imperfections sensitivity of elastic-plastic simply
supported square plates are also determined numerically in an incremental fashion. The
numerical procedure employed at each stage of the loading history is a combined finite
element-Rayleigh Ritz method[9, 10]. The numerical results are compared with the analytical
predictions.

2. PROBLEM FORMULATION

We consider square plates of length a and thickness.h. The displacements of the plate middle
surface are denoted by Ua § and w, where Ua are the in-plane displacements and w is the lateral
displacement. Then with the usual approximations of von Karman plate theory, the Lagrangian
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strain increment tensor is given by,

E' , 1 ( , . )
"'/3 = e"'/3 +2" W.",W./3 +W.",W./3

(1)

(2a)

(2b)

(3)

Here, X3 is the coordinate normal to the plate middle surface, () denotes differentiation with
respect to some monotonically increasing parameter that characterizes the loading history and
(),a denotes partial differentiation with respect to the inplane Cartesian coordinate x""

The stress increments are related to the strain increments (1) by

The 3-D tensor of moduli, 2ljkl, has two branches. One corresponds to plastic loading, the
other to elastic unloading. The elastic tensor of moduli, 2ijkl, is taken to be isotropic so that

(5)

Where E is Young's modulus, v is Poisson's ratio and 5'1 is the Kronecker delta.
The theory of plasticity employed here is small strain Jrflow theory with isotropic hardening

for which the 3-D tensor of moduli (4) is given by

where

and

W we SljSkI
.Lljkl = .L ljkl- q --y

Ue

1

0, if u. < Y or ire < 0

q = 3 E 1- E,IE '_
21+vW+v)E,IE+I-E,IE' If u.- Y and q.~O,

(6)

(7)

(8)

The tangent modulus, E" is the slope of the uniaxial stress-strain curve and Y, the flow stress, is
the greater of the maximum value of u. over the stress history and the initial yield stress, U y•

The representation of uniaxial stress-strain behaviour chosen is a piecewise power law with a
well defined yield stress and continuous tangent modulus,

{

.!!:.., for u < U y
E U y

E
y = 1. (.!!:..)" +1-1., for u ~ U yn U y n

(9)

where n is the strain hardening exponent and Ey = uylE.
Since the plate is approximately in a state of plane stress, only the in-plane stresses enter into

the constitutive relation. Thus,

(10)
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and the tensor of plane stress moduli is given by

187

(11)

It is convenient to introduce the membrane stress tensor Ne./i and the moment tensor Ma/i
where,

J
h/2

Na/i = Ua/i dX3,
-h/2

(12)

The incremental principle of virtual work now takes the form

where (EVW) . is the increment of the external virtual work and A is the area of the plate. Since
the tensor of moduli possesses the symmetry La/i"'~ = L..,aa/i' the virtual work eqn (13) is the
(weak) Euler equation of a variation principle for the displacement increment fields Ii.. and w.
This principle is used as the basis for the numerical method that will be described subsequently.

In this study attention is confined to square plates simply supported on all four sides, Le.

w= 0, Mil =0 on Xl =0, a
W= 0, M22 = 0 on X2 = 0, a

(14)

and uniform compressive loading is applied in the Xl-direction.
Two sets of in-plane boundary conditions are considered. First all four edges are constrained

to remain straight so that in Case I

UI(O, X2) = - ul(a, X2) = U

U2(XI, O) = - U2(Xh a) = - V (I5H

and the constant edge displacement increments U and V are determined so that the following
. conditions for the edge tractions are satisfied

Nl2 = 0 on Xl = 0, a and X2 = 0, a

La NIl dx2 prescribed at Xl = 0, a.

In the second case, the edges are unconstrained. Thus, in Case II (16b) holds together with

N22(XI, 0) = N 22(XI, a) = 0

Nil prescribed at Xl = 0, a.

(16a)

(16b)

(16c)

(17a)

(17b)

Both Cases, I and II, are compatible with a uniform uniaxial state of stress, so that in each
case, one solution to the boundary value problem is

U~/i = - A8 1a81/i (18a)

tIn the numerical computations it was often advantagous to prescribe if and then calculate the average traction.
However, for uniformity of presentation it is convenient to consider the average traction to be the prescribed quantity.
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or in terms of the membrane stress and moment tensors

(I8b)

Bifurcation from this solution first becomes possible when A = Ae where

and the corresponding eigenmode displacement is

(I) • 1TX 1 • 1TX2
W = ±h Sln-Sln-.

a a

(19)

(20)

The eigenvalue (19) and eigenmode (20) apply for both Case I and Case II. However, as will be
seen subsequently the in-plane boundary conditions can have a marked influence on the
postbuckling behaviour of the plate.

3. ASYMPTOTIC ANALYSIS

In the elastic range (Ae < fI'y), the initial postbifurcation behaviour of a simply supported
square plate can be determined from Koiter's general theory of elastic stability [1,7]. The initial
postbifuration behaviour is stable in the sense that the plate can support applied stresses higher
than Ae •

For Ae > fI'y, the initial postbifurcation behaviour is determined by means of Hutchinson's
asymptotic theory of postbuckling in the plastic range[6], which extends the bifurcation analysis
of Hill [11] into the post-bifurcation range. Denoting the amplitude of the eigenmode (20) by ~ so
that

(I)

w = ~w+' .

the applied stress at bifurcation varies as

where the sign of Wis chosen so that ~ is positive and

(21)

(22)

(23)

Here, the initial slope, A10 is uniquely determined by the requirement that plastic loading takes
place through the plate except at one point where neutral loading occurs [6]. This slope is positive
so that bifurcation takes place under increasing load in accord with Shanley's concept.

After bifurcation, a region of elastic unloading eminates from the point of neutral loading. The
next term in the postbifurcation expansion for A takes into account the penetration of this region
of elastic unloading into the plate and is proportional to t/3 [6], so that

(24)

This expression is asymptotically exact for small ~, the only approximation being that inherent in
plate theory.

An explicit formula for A2 will not be given here, but we note that the only field quantities that
enter into the determination of .\2 are those associated with the prebifurcation solution (18) and
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the eigenmode (20). Therefore, the nonlinear geometric terms do not enter into the
postbifurcation expansion to the order given in (24). In particular this means that the inplane
boundary conditions do not effect the value of A2 and, thus, the first three terms of (24) are
identical for both sets of in-plane boundary conditions.

Since in all cases we find A2 < 0, the first three terms of (24) can be employed to estimate the
value of the maximum support stress Amax and the corresponding bifurcation mode amplitude
~max. It must be emphasized that although (24) is an asymptotically exact expression, the values
of Amax and gmax obtained from the first three terms are not asymptotic in any sense, since the
maximum occurs at a finite (perhaps small) value of g. Table 1displays several results obtained
from this initial postbifurcation analysis. In all cases the Amax is only slightly higher than Ae•

In the plastic range, one would like to develop an asymptotic expansion about the bifurcation
point that relates the behaviour of a slightly imperfect plate to the postbifurcation behaviour of
the perfect plate as Koiter's [7] general theory relates the behaviour of a slightly imperfect elastic
structure to the postbifurcation behaviour of a perfect one. However, for elastic-plastic
structures such an analytical treatment of imperfection-sensitivity is made difficult by the fact
that the maximum support load is attained at a limit point after finite bifurcation mode deflections
and not at the bifurcation point as is the case for elastic structures [12]. Furthermore, for
"symmetric" structures such as flat plates, it would be necessary to continue (24) beyond the first
three terms in order to account for the geometric nonlinearities that play a crucial role in
determining the elastic postbifurcation behaviour. .

Table L Constants in plastic postbifurcation analysis for square plates

h/a n 0y/E v 'clay 'l / 'c '2 / 'c Amax/A c ';max

0.031 3 0.00337 0.3 1. 025 0.931 -6.018 1.0004 0.00156

0.031 10 0.00337 0.3 1.015 0.857 -4.515 1.0006 0.00288

0.035 3 0.00337 0.3 1. 259 0.632 -1.854 1.0026 o.0167

0.035 10 0.00337 0.3 1.196 0.206 -0.397 1.003 0.0594

Here, we will attempt an assessment of the imperfection-sensitivity of simply supported
square plates by an analysis that ignores elastic unloading. The constitutive eqns (4) are
employed, but the plastic loading branch of the tensor of moduli is taken to be active regardless
of the sign of ue• Thus, our analysis is strictly applicable for a hypoelastic but not for an
elastic-plastic plate. For such a hypothetical hypoelastic plate, the difficulties mentioned
previously disappear. The postbifurcation analysis for a perfect plate proceeds along the
same general lines as the analysis for elastic plates. The maximum support load of a per
fect plate, if there is one in the vicinity of the bifurcation point, is the bifurcation load and an
asymptotic expression can be found that relates the maximum support load of a plate with a small
imperfection to the bifurcation load of the perfect plate. In this aspect of the analysis there is a
significant difference between the analysis for the path dependent hypoelastic material and that
for an elastic material. This analysis is a generalization to the full von Karman plate equations of
the analysis given recently by Hutchinson and Budiansky [8] and is presented in the Appendix.
Here, only the main results are stated.

Attention is confined to imperfections in the shape of the bifurcation mode (20) and the
amplitude of the imperfection is donoted by [. For A< Ae, the lowest order effect of the
imperfection on the magnitude of the lateral deflection g, is found by a regular perturbation
analysis to be

(25)

where 'I' is apositive constant greater than or equal to unity, given by (A31), and P(A) is a function
of A, that is finite at Ae • For an elastic material, even a nonlinear one, 'I' = 1.

In the vicinity of Ae, a singular perturbation analysis gives Aas the following function of g

(26)
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Here, 'I' is the same constant appearing in (25), C and yare undetermined by the analysis and A~e

is obtained as outlined in the Appendix and requires the solution of an auxiliary boundary value
problem. It is in the solution of this boundary value problem that the in-plane boundary
conditions playa crucial role in determing the value of A~e.

For A near An (25) may be rewritten in the form (A34) and matching (25) and (26) determines c
and y, namely

y = 2'1' +1. (27)

If A~e < 0, a maximum support stress, Amax, occurs according to (26), which is given by

where

(28)

(29)

In Table 2, the results obtained from the hypoelastic postbifurcation analysis are given for the
same values of the parameters employed in the examples in Table 1 The most interesting
predictions are that, for n = 3, the initial postbifurcation behaviour is stable for three of the four
examples, while for n = 10, the initial postbifurcation behaviour is unstable for all cases
considered and for the example with h/a = 0·035 nearly independent of the in-plane boundary
conditions. We emphasize that, although the results displayed in Table 2are asymptotically exact
for the hypoelastic plate, they are only approximate for an elastic-plastic plate and are in no
sense asymptotic.

Finally, we note that when Ac < U'y, A~e reduces to the appropriate value for a linear elastic
plate A/. The auxiliary boundary value problem for the linear elastic plate was solved by the
same numerical method employed in the hypoelastic calculation to obtain for /l = 0·3,
A2

e
/ Ac = O'343 with the constrained in-plane boundary condition (Case I) and A2

e
/ Ac = 0·179 with

the unconstrained in-plane boundary condition (Case 11). For Case I, the exact value is
A2

e /A c =0·341 with /l =0·3, see e.g.[17].

4. NUMERICAL METHOD AND RESULTS

The numerical results to be presented here are obtained by an incremental method based on
the variational eqn (13). An initial imperfection of the form

w=~ (30)

is specified where Wis the bifurcation mode (20) and l denotes the imperfection amplitude. All

Table 2. Constants in hypoelastic postbifurcation analysis for square plates with uylE = 0·00337 and lJ = 0·3. The
numbers in the last column refer to in-plane boundary conditions

h/a n ~c/ay ~~e/~c r 2/ (2Hl) "
0.031 3 1.025 +0.15311.0318 0.6528 - I

0.031 3 1. 0 25 +0.014 1.0318 0.6528 - II

0.031 10 1. 015 -0.039 1. 060 1 0.6410 0.359 I

0.031 10 1. 015 -0.185 1. 060 1 0.6410 0.591 II

0.035 3 1.259 +0.030 1.4133 0.5227 - I

0.035 3 1. 259 -0.048 1.41>3 0.5227 0.440 II

0.035 10 1.196 -0.303 3.9557 0.2244 0.326 I

0.035 10 1.196 -0.308 3.9557 0.2244 0.327 II
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results given here for a "perfect" plate are actually the results of a calculation using a small
imperfection, [ = 1O-4h. At each stage of the loading history, an approximate solution of (13) is
obtained by the combined Rayleigh Ritz-finite element procedure employed in [9, 10], which is a
modified version of a method originated by Kawai and Ohtsubo[13, 3]. The increment of lateral
displacement w, is expanded in terms of smooth functions Wi as in the standard Rayleigh Ritz
method

N

W = L ~1Wi.
i=1

(31)

The corresponding in-plane displacements u,,/ are determined by a finite element calculation. The
plate is divided into rectangular elements and the functions ua

i are expanded in term of cubic
"serendipity" elements (Zienkiewicz[l4]).

First (13) is solved for the in-plane displacement field ua
i corresponding to each Wi. In

addition, for Case I, two in-plane modes u;;'+1 and U;;'+2 are computed corresponding to uniform
prescribed edge displacements in x 1_ and x 2-direction, respectively, and, for Case II, one in-plane
mode 12;;'+1 is computed corresponding to the prescribed edge loads. Thus, the in-plane
displacement functions are given by,

M= 1 or 2. (32)

Equations (31) and (32) now give the trial functions employed in the Rayleigh Ritz method.
In the solution of the Rayleigh Ritz problem, we avoid difficulties around the maximum load

by always prescribing that one of the N + M + 1 parameters, it. it ... , itr+M, A that is
numerically largest in the previous increment and then solving (13) for the remaining N +M
parameters. Once the~' have been determined the slightly corrected increments, ~j, are found
by using the curvatures of the function gi (A), which are numerically estimated using the slopes of
the previous increment.

Here, the assumed functions Wj are taken of the form

A j h' 'lTjlx . 1Ti2X
W = SlD-- SlD--.

a a
(33)

Due to symmetries the computations to be presented here are carried out for only one quarter of
the plate and it and h are taken to be odd integers. Furthermore, it was found to be sufficient only
to consider il and i2 ranging from 1to 3. Including higher order modes has no appreciable effect.

The quarter of the plate considered is divided into 4 elements and 16 point Gaussian
quadrature is used to evaluate in-plane integrals while a 7 point Simpson's rule is employed
through the thickness.

The active branch of the tensor of moduli (11) is determined at each integration point as
follows. If the stress state is on its current yield surface, the plastic loading branch is taken to be
active. Then, if U. turns out to be negative the elastic unloading branch is taken to be active in the
next increment. This procedure is only accurate if small increments are used and if the transition
from loading to unloading occurs only once or twice during the loading history.

Figures 1 and 2 display results for cases in which bifurcation of the perfect plate occurs in the
plastic range. In both cases, hla = 0,035, P = 0·3 and uylE = 0'00337; in Fig. 1 n = 10 and
Acluy = 1·196 while in Fig. 2 n = 3 and Acluy = 1·259. Even though bifurcation occurs well into
the plastic range, the bifurcation predictions of J2-ftow theory and those of the simplest
deformation theory, J2-deformation theory, do not differ greatly. In Fig. 1 with n = 10 the
discrepency is 5·8% while in Fig. 2 with n = 3 it is 2·3%.

The next two figures, Figs. 3 and 4, display results for plates with hla = 0·031, P = 0·3 and
U y IE = 0·00337 in which bifurcation of the perfect plate occurs just after plastic yielding. In this
situation, there is virtually no discrepency between the bifurcation predictions of J2-ftow theory
and those of J 2-deformation theory. In Fig. 3, n = 10, and Ac luy = 1·015 while in Fig. 4 n = 3 and
Acluy = 1·025.

SS Vol. 12. No. J-C
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Fig. 1. Load vs buckling mode displacementfor square plate (uy/E = 0·00337, h/a = 0,035, n = 10, II = 0,3).
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Fig. 2. Load vs buckling mode displacement for square plate (uy/E = 0,00337, h/a = 0·035, n = 3, II = 0·3).
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Fig. 3. Load vs buckling mode displacement for square plate (uy/E = 0·00337, h/a = 0,031, n = 10, II = 0,3).
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x maximum

o initial yield

---- Case I
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Fig.4. Load vs buckling mode displacement for square plate (u,IE = 0,00337, hla = 0,031, n = 3, v = 0,3).
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For the perfect plates, the behaviour in the immediate vicinity of the bifurcation point is
described by (24) in that bifurcation takes place under increasing load and the curvature of the
load deflection curve is large and negative, Furthermore, in the immediate vicinity of the
bifurcation point, the initial postbifurcation behaviour is independent of the boundary conditions.

In Fig, 1, where n = 10, the maximum support load and the buckling deflection, ~, at the
maximum load are seen to be in good agreement with the results in Table 1. After the maximum
load point, the load falls of rapidly. The postbucklong behaviour of the perfect plate is virtually
identical for both sets of in-plane boundary conditions, as is the behaviour of a plate with a small
imperfection, ~ = 0·01. On the other hand as the initial imperfection amplitude is increased the
effect of the in-plane boundary conditions becomes significant. For the largest imperfection
amplitude considered here, ~ = 1,0, the plate with the constrained boundary conditions has a
maximum support load about 25% higher than the one with the unconstrained in-plane boundary
condition.

In Fig. 2, where n = 3, the postbifurcation behaviour of the perfect plate depends crucially on
the in-plane boundary conditions. With the unconstrained in-plane boundary conditions the load
reaches a maximum and thereafter decreases monotonically, whereas with the constrained
boundary condition the load continues to rise. Here, the mode amplitude, ~max, obtained from (24)
is considerably smalller than the numerical value obtained with the unconstrained boundary
condition. The load-deflection behaviour of the plate with an initial imperfection also depends
crucially on the in-plane boundary conditions. An imperfect plate with the constrained in-plane
boundary condition can support loads in excess of the bifurcation load, while plates with the
unconstrained boundary condition exhibit a mild imperfection sensitivity.

In Fig. 3, where n = 10, the load on the perfect plates reaches a maximum shortly after
bifurcation, and thereafter decreases monotonically. Compared with the example in Fig. 1, where
bifurcation of the perfect plate occurred further into the plastic range, the effect of the in-plane
boundary conditions shows up much sooner here. Also, even for an initial imperfection amplitude
of ~ = 0,01, the effect of the in-plane boundary conditions on the load deflection behaviour of the
plate is noticable. This effect increases with the amplitude of the initial imperfection. Note that in
Fig. 3, for each initial imperfection amplitude considered, the imperfection sensitivity is less than
for the corresponding example in Fig. 1.

In Fig. 4, where n = 3, the load-buckling deflection curves for the perfect plates reach a
maximum, decrease, reach a minimum and thereafter increase. For both sets of in-plane
boundary conditions no imperfection sensitivity is exhibited.

Computations have also been carried out for a plate that bifurcates elastically at a stress 3%
below (J'y. The results for n = 10 and n = 3 differ very little from those of Figs. 3 and 4, except that
the postbifurcation behaviour of the perfect plate is initially elastic untill yielding starts at
~1 =0·05. To compare with the results of Mayers and Budiansky [2] for the constrained in-plane
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condition, Case I, a few computations were also made with n = 7·25. In agreement with Ref. [2] a
stable postbuckling behaviour was found for Case I, and furthermore it was found that Case II is
somewhat imperfection-sensitive. The present results show that square elastic-plastic plates are
considerably less imperfection-sensitive than circular elastic-plastic plates [15].

The numerical results displayed in Figs. 1-4 shall now be compared with the predictions of
the asymptotic analysis with elastic unloading neglected. The relevant constants obtained by
means of this hypoelastic analysis are given in Table 2. In Table 3 the asymptotic predictions of
maximum loads and corresponding mode amplitudes for imperfect hypoelastic plates are
compared with the numerical results for elastic-plastic plates. For n = 10 and h/a =0·035 (Fig. 1)
the asymptotic analysis indicates that the postbifurcation behaviour and the behaviour of a plate
with a small initial imperfection is virtually independent of the in-plane boundary conditions in
agreement with the numerical results. For n = 3 and h /a = 0·035 (Fig. 2) the hypoelastic analysis
is also in qualitative agreement with the numerical results. For the constrained in-plane boundary
conditions, this analysis predicts the stable initial postbifurcation behaviour and corresponding
lack of imperfection-sensitivity displayed in Fig. 2. On the other hand for the unconstrained
in-plane boundary condition, (28) gives an imperfection-sensitivity in agreement with the
numerical results. For n = 10 and h/a = 0·031 (Fig. 3) the asymptotic results agree with the
numerical results in predicting imperfection-sensitivity for both sets of in-plane boundary
conditions. Finally for n = 3 and h /a = 0·031 (Fig. 4) A2he is positive for both cases, and no
imperfection-sensitivity is exhibited.

In view of the large buckling mode deflection at the maximum load point, the agreement
between the analytical predictions and the numerical results is remarkably good.

Thus, in every example considered here in which bifurcation of the perfect plate has taken
place in the plastic range, the "overall" postbifurcation behaviour of the perfect plate and the
degree of imperfection sensitity of an imperfect plate has agreed with the predictions of the
hypoelastic analysis in which unloading is neglected. This agreement has been achieved even
though the numerical results clearly show that, in the immediate vicinity of the bifurcation point
of the perfect plate, the hypoelastic analysis does not apply, since in this vicinity the effect of
elastic unloading is dominant.

A number of the curves presented in Figs. 1-4 have also been computed numerically for the
corresponding hypoelastic plates without elastic unloading, thus using the same assumptions as
were the basis for the asymptotic results (25)-(29). For most of the imperfect plates the numerical
results for the elastic-plastic and hypoelastic plates were identical, because elastic unloading did
not occur, and even for the perfect plates little difference was found except in the neighborhood
of the bifurcation point. Therefore, the attempt to estimate imperfection-sensitivity of
elastic-plastic plates by considering corresponding hypoelastic plates is reasonable and only
involves minor numerical errors. For the quite different problem of an elastic-plastic column with

Table 3. Comparison of asymptotic hypoelastic predictions and numerical results for elastic-plastic square plates.
The numbers in the first column refer to in-plane boundary conditions

Asymptotic Numerical

h/a n r: Amax/Ac i;max \max/Ac ';max

.01 .88 .21 I .93 .24

I .035 10
.1 .81 .27 .86 .52

.01 .88 .21 .93 .23 I
II .035 10

II .1 .81 .27 .84 .51
I

I

I

.01 .96 .23 .97 .53 I

II .035 3
.1 .87 .85 .94 > 2

I
I I

I
.01 .98 .39 .97 .41 i

I .031 10
I.1 .92 .82 .94 I .78

.01 .97 .23 I .96 .29

II .031 10

\.1 .86 .48 .88 .68
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an asymmetric cross-section a similar agreement with the corresponding hypoelastic column has
been found numerically [16], The fact that eqns (25)-(29) are lowest order asymptotic results
seems to be a more important approximation for the present case than the approximation due to
disregarding elastic unloading,
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APPENDIX 1
Asymptotic analysis with elastic unloading neglected

Here, the postbuckling analysis for a hypoelastic plate will be presented. The starting point of the analysis is the principle
of virtual work. In much of the analysis it is convenient to use the total form of this principle rather than the incremental form
(13) and to express the external virtual work in terms of quantities associated with the prebifurcation solution,

(Al)

where A is the area of the plate middle surface, and in (Al), and throughout this analysis, ()"denotes field quantities
associated with the prebifurcation solution (18). The quantity Iii denotes the magnitude and form of the initial imperfection,
while wmeasures the additional lateral deflection. Attention is confined to imperfections in the shape of the bifurcation mode
(20) so that Iii = lW.

In many respects, the present analysis parallels that given by Hutchinson and Budiansky [8]. As in [8], it is convenient to
divide the analysis into several parts: (i) a regular perturbation analysis valid for A < Ac, (ii) a singular perturbation analysis
valid for A near Ac , and (iii) the matching of (i) and (ii).

However, before undertaking the analysis of an imperfect plate we consider a perfect plate (f =0). The prebifurcation
solution is given by (18) and the variational equation governing bifurcation is readily found to be

(A2)

Here,

(A3)

(I) (1) (I)

where (r denotes quantities evaluated at A=Ac , ( ) denotes quantities associated with the eigenmode and NQ~ and MQ~ are
obtained from (A3) by (12). Throughout this analysis it will be convenient to work with UQ~ and TjQ~ in the constitutive
equation, while continuing to employ NQ~' MQ~' EQ~ and KQ~ in the principle of virtual work.

The solution to this bifurcation problem is,

(A4)
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while ,Ie and Ware given by (19) and (20), and apply for an elastic-plastic as well as for the corresponding hypoelastic
material. In Hill's [II] terminology this hypoelastic material is called a "linear comparison solid".

For an elastic-plastic material unloading plays a crucial role in determining the post befurcation behaviour as shown by
Hutchinson [6] and, for the problems considered here, the initial postbifurcation expansion is given by (24). On the other
hand, for a hypoelastic material, the initial postbifurcation expansion takes the form

(A5a)

(A5b)

(A5c)

In (A5), the notation A;h. has been employed in order to emphasize that (A5a) is valid only when the unloading branch of (4) is
suppressed. Furthermore, due to the symmetry of the plate, it can be shown that AI h. =O.

In order for the expansion parameter ~ to be well defined it is necessary to ensure that the functions W, i > I, are
orthogonal to W. This orthogonality condition is taken to be

i > I. (A6)

The expansion for the strains is found by substituting (A5b) and (A5c) into (1)-(3) to obtain

where
(I) (I)

71QI3~X3KafJ

(2) (2) I (1) (1) (2)

1/.~= e.~ +2 W•• w.~ +x, K.~

(3) (3) 1 (2) (I) (1) (2) (3)

1/.~ = e.~ +2:( w.• W.~ + W.• W.~)+ X, K.~

(A7)

(ABa)

(ASb)

(ASe)

The expansion for the stresses is obtained from (A7) and the constitutive relation (4), with (f identified as d( )/d~. The loading
braneh of the tensor of moduli is expanded in a Taylor series about ,Ie,

(A9)

Here, the subscript"c" indicates that the moduli derivatives are evaluated at u~~ The expansion for the stresses takes the form

(AIO)

where VJ.~ is given by (A3) and

(3) (3) (3)

UO/.fJ=L~IJ'YB 11'Ya+ DafJ

D = ~ Ah. (I) aL.~"1 de~., +~ (I) aL.~,., (2) +! A h. du,.., aL.~"1 (I)

.~ 3 2 u,.. au,.. e dA e 3 u,.. au,.. e Th. 3 2 dA e au,.. e 1/,.

Employing the expansions (A5), (A7) and (AlO) in (AI) gives,

f
(2) (l) (2) f [(3) (3J (2l (1)

2~ [N.~8e.~+M.~8K.~ +N~~ w.•8w.~]dA +3e A N.~8e.~ +M.~8K.~ +N.~ w.•8w.~

A

tThe moduli derivatives are given in Appendix 2.

(Alia)

(AlIb)

A(llc)

(A11d)t

(AI2)
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(1)

With 6() replaced by (), and employing (A2) and (A6), (A12) simplifies to

From (Allb) and the orthogonality condition (A6), we obtain

f (3) (1) f f"/2 (3) (1)
Ma~Ka~ dA = x,Da~ Ka~dx,dA

A A. -11/2
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(A13)

(AI4)

The two relations (A13) and (A14) determine A2h. once 71a and Ware known. By orthogonality Wvanishes, and 71a is found
by solving an auxilliary boundary value problem, namely

where

(2) (2) flal2 (2)

Na~ = hL~~,.. B,. + Da~ dx,.
-"/2

(A15)

(A16)

Here, this boundary value problem is solved by the finite element method. The solution is straightforward since (A15) and
(A16) result in a plane stress problem with a distributed load. The solution of this boundary value problem and, therefore, the
value of A,Io4 depends on the in-plane boundary condition, as shown in Table 2.

(i) Regular perturbation analysis for A< Ac • For an imperfect plate, lateral deflection begins to occur as soon as A
deviates from zero and, initially, A is a monotonically increasing function of the amplitude of the lateral deflection. Here, the
lowest order effect of a small imperfection ([ <c 1) on this rising part of the A- ~ curve is obtained. We seek expansions of the
form

w=w,
(AI7)

A c _

u~ = A:' Ua~+ Ua~

where (-) are the perturbations of the field quantities due to the presence of the imperfection and vanish at A=O. Since, the
expansions (AI7) apply while A is monotonically increasing, in this part of the analysis, A will be employed as the parameter
characterizing the loading history. All equations are linearized so that products of perturbation quantities and products of [
with perturbation quantities are neglected.

The strain-displacement eqns (1)-(3) give,

The tensor of moduli La~'" is expanded in a Taylor series about the fundamental stress state, u~~, of the form

L - LO iJLa~"'1 ( 0 )a~..,a - Ol/j"llJ+-.-- CTp.v- U ,..... +...
vUJA,V 0

where "0" denotes moduli and moduli derivatives evaluated at u~~
The linearized expansion for ija~ is found from (AI7), (A18) and (A19) to be

The linearized principle of virtual work is

We now exploit the fact that, for the problems considered here, there is a complete set of eigenfunctions of the form

(A18)

(A19)

(A20)

(A21)

i" i2 , = 1, 2, 3 ... (A22)

These eigenfunctions are orthogonal in the sense of (A6). This implies

i~ j. (A23)

However, in addition to (A23), the eigenfunctions satisfy a much stronger orthogonality condition. Let Ca~'" be a fourth
order tensor independent of Xa satisfying the orthotropy conditions

CIII2 = C2212 = = Cml = C1222 = O. (A24)
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Then, as may be verified by noting the orthogonality properties of the sine and consine

i;t j. (A25)

From (A20) it can be seen that, to the order considered here, the moduli relating u.~ to the strain history remain
orthotropic, that is, satisfy (A24). Next, wis expanded in terms of the complete set of functions (A22) and the principle of

(I)

virtual work is differentiated with respect to A. With S() replaced by () and using (A6) this gives

(A26)

Employing (A20), (A25) and adding

we obtain,

(A -A )d~f [~L~~.,.-L~~'8(1) (I) ..!..N' (I) (I) ]dA
, dA A 12 (A, -A) K.~ K,8 +A, .~ w.• w.~

+ tfA [aL.~'81 M"v~ (I) _~ aLaI"81 du~v (I) (I) ] dA
~ au~v 0 ~ dA K.~ 12 au~v 0 dA K.~ K,8

+ tfA [~aL.~'81 du~v (I) (I) +..!.. NC (I) (I) ] dA
~ 12 au~" 0 dA K.~ K.,. A

c
.~ w.• w.~

-f I c (I) (I)
+~ -A N.~w.• w.~dA=O.

A c

From (A28), it can be seen that ~ -->!Xl as A--> A" and from (A20)

Thus, we can write

-( A)-'"~=~ I-A:" peA)

where from (A28) 'I' is found to be

'I'=l+~
{32

at = fA [aL.~'81 (I) de'81 (I) _~ aL·~"'1 du~vl (I) (I) ] dA,., M,," d' K.~ 12 a d' K.~K.,.au""., cAe (T""v c 1\ c

f3 - f [..!.. NC (I) (I) ~ aL.~'81 dU~vl (I) (I) ] dA
2- , .~W .• w.~ + 12 a dA K.~K,8 .

A A c O',..,v c c

(A27)

(A28)

(A29)

(A30)

(A31)

(A32)

(A33)

The quantity (3t vanishes for an elastic material,linear or nonlinear, as is easily seen by using the fact that then the moduli can
be derived from a strain energy density. Thus for an elastic plate 'I' = 1.

Since peA) remains finite at A" (A30) can be substituted into (A28) and peA) computed by a straightforward procedure.
As AIA, --> I, (A30) can be rewritten in the form

(A34)

This expression, (A34), which holds on the rising part of the A- ~ curve, will be matched with an asymptotic expression
valid near A=Ac obtained in the next part of the analysis. _

(ii) Singular perturbation analysis for A= Ac• An asymptotic expression, valid for smalllA - Ac I, ~ and ~, is sought that
accounts for the lowest order effect of an imperfection. Following Budiansky[l71, the functional relation between A, ~ and l
is constrained by the relation l = ag', so that for y properly chosen, only integer powers of €are needed in the expansion
about Ac to account for the lowest order effect of the imperfection. Thus, we assume expansions of the form

A= Ac +A2"C+'"

(I) (2) (3)

w=w€+wc+we+···

(I) (2) (3)

u. =u.O+u.~ +u.e +u.e +...

(A35a)

(A35b)

(A35c)
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0) (2) (3)

1ja~=1j~~+ r,a~€+ 1ja~e+ 1ja~e+"'·

(I) (2) (3)

CTa~ =CT~~+ iTa~€ + iTa~e+ iTa~e + ...
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(A35d)

(A35e)

Here, barred quantities are functions of a and for a perfect plate (a = 0), reduce to their unbarred counterparts (A5),
(A7), (AIO). In (A35a), A,·' has been assumed zero. This results in no loss in generality since the same result for the lowest
order effect of the imperfection is obtained with A,·';o! 0[17].

(I)

By employing €as the expansion variable in (A35) we are anticipating the result, to be verified subsequently, that iii = W.
(0 (I) (1)

Furthermore, we require that iii, ; > 1, be orthogonal to w (= iii) in the sense of (A6).
The parameter characterizing the loading history is now taken to be €and ( ). denotes the derivative with respect to €with

€fixed. The expansions for the strain and stress increments obtained from (A35d) and (A35e) are

where as in[8]

(I) _ (2) _ (3)

Tia~=.P, (1ja~) + .P2(A,·'1j~~ + 1j.~) €+ .P3(A"'1/~~ + 1j.~) e+ ...
(1) _ (2) _ (3)

u.~ = .P, (iT.~) + .P2(A:'CT~S + iT.~ H + .P3(A"'CT~~ + iT.~) e+ ...

.P, () =;() - ay().•

(A36a)

(A36b)

(A37)

and ()" denotes d( )/dA evaluated at Ac•

The stress increments are given in terms of the strain increments by expanding the tensor of moduli in a Taylor series
about CT~~ as in (A9). The lowest order term is

The solution of (A38) is

(1) (1)

.P, (Cr.~) = L ~~y,$, ( ii y8).

(I) (1)

lr QfJ = L~,B1'81Jy8

(A38)

(A39)

plus the homogeneous solution of (A38). This homogeneous solution gives rise to a stress field that does not vanish with f
Since there is no such stress field in the solution obtained in part (i) of the analysis, matching determines that the constant
multiplying the homogeneous solution is zero. Therefore, for convenience, here and subsequently such homogeneous
solutions will be discarded.

Substituting (A39) and (A35) into the principle of virtual work and taking the limit as €--> 0, with y > I, gives

(I)

u. =0,

From (A36), (A9) and (A40) we obtain,

(2)

Introducing .U2 = X:' - A:', I:!. c:J.~ = iT.~ - c:J.~ etc., into (A41) and (A42) and using (All) we obtain

With the homogeneous solution discarded, (A43) gives

(A40)

(A41)

(A42)

(A43)

(A44)

Anticipating that y 2: 3, the principle of virtual work gives

(A45)

(A46)
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Then, from (A2) and the orthogonality condition (A6), we obtain

Thus, (A44) simplifies to

(2l

11 u, = 0 11 W= O. (A47)

The solution to this equation is

(A48)

.(3) -Lc .(3) +'A ,c aLajJ"'f81 (I) 3/,[(1) aLa~"'1 >c_ >caLa~"1 (I) ] xJ' -I/,d(IlA2a-
2/
')d

l.l (Ta~ - a~,'l.l '1/ " l.l 2(T ~v a '1/.,. +a (T,.v a e" (T ~v a '1/ " a d a
U'fA.V C U'p.11 C 0'1£11 C a

(A49)

where the lower limit of the integral with respect to a is left unspecified temporarily.
The next terms of interest in the expansion of the principle of virtual work are

J [ (3) (3) IlA (I)] J (I) 0 S )e A IlNa~8ea~ + IlMa~8Ka~ + A
c

2
N~~ w.a8w.~ dA + aC A N~~ w.,8w.~ dA + ... = . (A 0

We will proceed on the assumption that 'Y > 3 and comment later on the case 'Y =3. Substituting (A49) into (ASO) and
I

replacing 80 by 0 gives

where Ii' is given by (A31).
Multiplying (A51) by a -3/, and differentiating with respect to a yields,

d(1lA 2) = 21i' + I IlA
2da a('YIi')

Thus,

(AS 1)

(AS2)

(A53)

Both c and 'Y are determined by matching (A35a) with (A34).
Before proceeding with this matching, the lower limit of the integral appearing in (A49) and (ASI) will be specified. Call

this lower limit ao and substitute (AS3) into (A51) to obtain

(A54)

Since Ii' is not less than one and 'Y;;' 3, ao must be co.
(iii) Matching. When (A35a) and (AS3) are rewritten in terms of ~ and [ using a =[~-., the expansion for A, valid for

IA - Ac I small, takes the form

(A55)

Let ~ ~0, so that IA ~'Ie is small compared to the third term of (ASS), which itself must be small for (A55) to be valid, then
(A5S) and (A34) give

'Y=21i'+1. (AS6)

Since Ii' ;;, I, with equality holding only if the hypoelastic material is actually elastic, (AS6) implies 'Y > 3 if the material is
not elastic. In the latter case (ASO) yields a linear inhomogeneous algebraic equation for IlA2 • In particular when Ac < (TY' the
result for a linear elastic structure is obtained (see e.g. [17]).

APPENDIX 2
Moduli derivatives

Here, the expressions for the derivatives of the tensor of moduli (11) employed in the postbuckling analysis will be given.
The tensor of moduli (II) may be written in the form

where L ~~.,. is the linear elastic tensor of plane stresses moduli and

'=~[~~+l]g E 3E/E,-1

(Bl)

(B2a)
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• I 1+11 1-211 u~
g = g -6 E 1- II U,2

au, 3 _I [ I 0]
aUI£V = '2 U e UIJ.l' -3' UyyUlJ.1'

-.!L = [dg .!5.. _! (1-211)(1 +II) U,; 8~v +! (1-211)(1 +II) u~ au, ]
au~v du, au~v 3 (1- II)E u, 3 (1- II)E u, au~v

a2m.~ 1(3) -2 au, [00 11-211 00 ]

aUlJ.vaupw = -" 2 Ue au".., °Ol",'ofjll - 3't="""; (JafJU"""

_m.A_a'U, _u-lam.~ au, + -2 au, au.-= ---- u, ----m.~u, au~vau"., • au"., au~v au~v au".,
a2u, _I au, au. 3 -1[0 0 1 0 0 ]-a--a-=-u, -a--a-+-2 u• o~.u~--3°~vo".,

UIJ.V Upw (TIJ.V U(J(J)

a'g d'g au, au. dg a'u.----=-----+----
au~vau"., du'> au~v au"., du, au~vau..,

(I +11)(1- 211) [-2 -3 au.+ 3E(I- II) - u, 8~v8.., +2u, Uyy au.., 8~v

+2 -2 au, 8 3 -4 2 au. au, + -3 2 a2u.]
Ue Uyy aU1J.1J pw - ere U 'YY aU""" aupw ere U 'Y'Y aUIJ..,aupu .
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(B2b)

(B3)

(B4)

(B5)

(B6)

(B7)

(B8)

(B9)

(BIO)

(Bll)


